

Document TG-FLU-PE, Version 1				
Date:	ate: Effective Date: Workflow Version:			
8/4/2023 8/2023 PHB v1				

1. PURPOSE/SCOPE

To standardize the process of analyzing influenza (Flu) next generation sequencing (NGS) data using Theiagen's TheiaCoV_Illumina_PE_PHB, Augur_Prep_PHB, and Augur_PHB workflows in Terra to determine typing, subtyping, and lineage designation. Acceptable data types include Illumina paired end (PE) raw read file format.

2. REQUIRED RESOURCES

- Computer
- Internet connection: at least 10 and 5Mbps for download and upload speeds, respectively
- Internet browser
 Google Chrome, Firefox, or Edge
- Google account
- Terra account, linked to Google account
- Illumina paired end (PE) raw sequencing read files uploaded to Terra workspace
- Theiagen's TheiaCoV_Illumina_PE_PHB, Augur_Prep_PHB, and Augur_PHB workflows in Terra

3. RELATED DOCUMENTS

Document Number	Document Name
TG-TER-03	Uploading Local or SRA NGS Data & Creating a Results Metadata Table in Terra

4. PROCEDURE

4.1 CREATE A SAMPLE METADATA FILE (TSV FILE) FOR RAW READS

1. In Excel, *create a list* containing the following sample information:

a. For all analyses:

- i. Column 1 header (Fig 1): *entity:kilifi_H3N2_id* where *kilifi_H3N2* is the name of the data table/group of samples to be analyzed
- ii. List all *sample IDs* in column 1

entity <mark>:kilifi_H3N2_</mark> id	accession	collection_date	continent	country	state	read1	read2
100734	A/Kilifi/131/20	1(8/5/2010	Africa	Kenya	Kilifi	100734_R	100734_R
100954	A/Kilifi/132/20	1(8/17/2010	Africa	Kenya	Kilifi	100954_R	100954_R
SRR11445941	SRR11445941	1/24/2017	Europe	Belgium	Brussels-C		
SRR13443360	SRR13443360	6/8/2018	Europe	Belgium	Brussels-C		
Figure 1: Raw Read Me	etadata File. 76	3/11/2019	Europe	Spain	Catalonia		

Document TG-FLU-PE, Version 1			
Date:	Date: Effective Date: Workflow Version:		
8/4/2023 8/2023		PHB v1	

b. For analysis from raw sequencing reads (Fig 1)

- i. Use column headers: read1 and read2
- ii. List the *full cloud file paths* to read1 and read2 files
- c. For analysis using SRA fetch (Fig 2):
 - i. Column header: *accession*, or similar
- d. <u>Optional</u>: remaining columns may be used to add metadata like run_id, additional lab results, sample collection information, demographic data, etc
- e. Do not include spaces in the headers
- 2. Save as a txt or tsv file
- Upload to Terra workspace; see TG-TER-03 for details

4.2 RUNNING THE THEIACOV WORKFLOW

- 1. Open Terra and navigate to the workflows tab in the workspace containing flu data
- 2. Select the *TheiaCoV_Illumina_PE_PHB* workflow (Fig 2)
- 3. Choose the latest version of *version 1* in the version dropdown field, or the workflow version that was used during internal assay validation (Fig 3, a)
- 4. Select the second bullet to run workflow(s) with inputs defined by data table (Fig 3, b)
- 5. Select the data table name under the select *root entity type* dropdown (Fig 3, c)
- 6. Click select data (Fig 3, d)

The	eiaCoV_IIIumina_PE_PHB	Figure 3.
Versi	ion: v1.0.1 • (10.1	
Sour	rce: github.com/theiagen/public_health_bioinformatics/TheiaCoV_Illumina_PE_PHB:v1.0.1	
Syno	ppsis:	
No d	locumentation provided	
	Run workflow with inputs defined by file paths	
R	Pup workflow(s) with inputs defined by data table	
V	Jse call caching 🟮 🗌 Delete intermediate outputs 🕄 📄 Use reference disks 🕄 📄 Retry with more memory 🕄 🗖 Ignore emp	ty outputs

Document TG-FLU-PE, Version 1				
Date: Effective Date: Workflow Version:				
8/4/2023	8/2023	PHB v1		

- 7. In the pop-up window select the checkbox for each sample to be included in the analysis (Fig 4)
 - a. Click the checkbox dropdown and all to select all samples in the data table; if the checkbox at the top is checked, only the first 100 samples in the data table will be selected
 - b. Additionally, a subset of samples may be chosen using the search bar to filter before selecting the checkbox at the top to only select samples matching the search criteria (Fig 4, highlight)
- c. Scroll to the bottom and click ok
 d. Optional: Check the box to ignore empty outputs (Fig 3)
 8. Set the first three attributes in the table to this.kilifi_H3N2_id (Fig 5), respectively
 - a. Where *kilifi_H3N2* is the unique name of your data table in Terra
 - b. In the *organism* attribute field enter *"flu"* in quotation marks (Fig 5)

SCRIPT •• INPUTS •	OUTPUTS •• RUN ANALYSIS		
Hide optional inputs			Download json Drag or click to upload json Clear ir
Task name ↓	Variable	Туре	Attribute
theiacov_illumina_pe	read1_raw	File	this.readl
theiacov_illumina_pe	read2_raw	File	this.read2
theiacov_illumina_pe	samplename	String	this.kilifi_H3N2_id d
abricate_flu	cpu	Int	Optional
theiacov_illumina_pe	organism	String	"flu"
Figure 5. _{a_pe}	phix	File	Optional

- 9. Specify outputs by clicking on the *outputs* tab and *use defaults* (Fig 6)
- 10. Click save
- 11. Launch the workflow by clicking run analysis; enter desired comments and click launch

Analyzin Theia	g Influenza Data in Terra CoV Illumina PE and Aug	using Theiagen's ur Workflows		
	Document TG-FLU-PE, Version 1			
Date:	Effective Date:	Workflow Version:		
8/4/2023	8/2023	PHB v1		

SCRIPT •• INPUTS	•• OUTPUTS •• RUN A	NALYSIS		
Output files will be saved to Files / submission unique ID / theiacov_i	llumina_pe / w			
References to outputs will be written to Interpret Tables / illumina_pe_specimen Fill in the attributes below to add or update	columns in you Ita table			
		Download json Drag or c	lick to upload json Clear outputs	SEARCH OUTPUTS
Task name ↓	Variable	Туре	Attribute Use defaults	
Figure 6.	abricate_flu_database	String	Optional	{}

4.3 RUNNING THE AUGUR PREP WORKFLOW FOR HA OR NA FLU PROTEINS

- Confirm the TheiaCoV worklow has successfully completed by viewing the relevant job submission status in the *job history* workspace tab; green and red indicate successful and failed jobs, respectively, while blue represents unfinished jobs
- 2. Perform quality assessment per internal protocols and proceed with Augur Prep for samples passing quality control (QC) metrics
 - a. For samples that do not meet QC thresholds, resequence
 - *i.* Samples not meeting thresholds may proceed to Augur Prep at the discretion of the lab
- 3. Navigate to the *workflows* tab and select the *Augur_Prep_PHB* workflow
- 4. Choose the latest version of the workflow in the *version dropdown field*, or the workflow version that was used during internal assay validation
- 5. Select the second bullet to *run workflow(s) with inputs defined by data table* (Fig 3, b)
- 6. Select the relevant data table name under the select **root entity type** dropdown (Fig 3, c)
- 7. Click *select data* (Fig 3, d)
- 8. In the pop-up window select the checkbox for each sample to be included in the analysis (Fig 7)
 - a. Do not include any samples that are missing either *irma_ha_segment* or *irma_na_segment*
 - b. Click the down arrow and select all to process all samples
 - c. Additionally, the search bar may be used to narrow down the sample list to only those matching search criteria (e.g. only "SRR" sample names or just "Type_A" samples, etc)
 - *d.* <u>Optional</u>: name the output file something to differentiate it from other runs, e.g. HA_AugurPrep_YYYYMMDD.# or NA_AugurPrep_YYYYMMDD.# (Fig 6, c)
 - e. Scroll to the bottom and click ok

Analyzin Theia	Analyzing Influenza Data in Terra using Theiagen's TheiaCoV Illumina PE and Augur Workflows			
	Document TG-FLU-PE, Version 1			
Date:	Effective Date:	Workflow Version:		
8/4/2023	8/4/2023 8/2023 PHB v1			

□•	kilifi_H3N2_id	↓ ①scan_version	irma_ha_segment	irma_na_segment	(
	99056	-scan 0.4.4	99056_HA.fasta	99056_NA.fasta	
	6 h	-scan 0.4.4	SRR11445892_HA.fasta	SRR11445892_NA.fasta	
	SRR11445940	-scan 0.4.4	SRR11445940_HA.fasta	SRR11445940_NA.fasta	
	SRR11445941	-scan 0.4.4	SRR11445941_HA.fasta	SRR11445941_NA.fasta	
	SRR13443360	-scan 0.4.4	SRR13443360_HA.fasta	SRR13443360_NA.fasta	
	SRR19881876				
	SRR19881876	4			

- 9. Set the first five input attributes in the table to the following, respectively (Fig 8)
 - a. this.irma_ha_segment
 - i. When running Augur Prep on the NA segment, enter this.irma_na_segment
 - b. this.collection_date
 - c. this.continent
 - d. this.country
 - e. this.state
 - i. Input text shown in grey indicates this is variable; text must your Terra data table column headers, excluding the prefix "this." (Fig 1)
- 10. In the *organism* attribute field enter *"flu"* in quotation marks (Fig 5)
- 11. Specify outputs by clicking on the *outputs* tab and *use defaults* (Fig 6); click *save*
- 12. Launch the workflow by clicking run analysis; enter desired comments and click launch
- 13. Repeat section 4.3 to run Augur Prep for the NA protein with the following changes:
 - a. When selecting data to run, *enter a different output file name* to distinguish the NA Augur run from the HA run, e.g. NA_AugurPrep_YYYYMMDD.# (Fig 7, c)

Document TG-FLU-PE, Version 1				
Date: Effective Date: Workflow Version:				
8/4/2023	8/2023	PHB v1		

b. Specify <u>this.irma_na_segment</u> in the first input field rather than using this.irma_ha_segment as before

SCRIPT •• INPUTS	S •• OUTPUTS •• RUN A	ANALYSIS		
Hide optional inputs				
Task name 🜡	Variable	Туре	Attribute	
augur_prep	assembly	File	this.irma_ha_segment	
augur_prep	collection_date	String	this collection_date	
augur_prep	continent	String	thiscontinent	
augur_prep	country	String	thiscountry	
	state	String	thisstate	
Figure 8.				

Select D	Data	
O Create	e a new kilifi_H3N2_set from selected kilifi_H3N2s se specific kilifi_H3N2_sets to process	
Select	kilifi_H3N2_sets to process 🎄 SETTINGS 🛛 1 row selected 🚍	ADVANCED SEARCH Search Q
•	kilifi_H3N2_set_id	kilifi_H3N2s
	HA_AugurPrep_20230627.1	92804, 93547, 944 (37 entities)
	NA_AugurPrep_20230627.1	92804, 93547, 944 (37 entities)
	SRA_Fetch_PHB_2023-06-27T18-24-30	SRR11445892, SRR1 (5 entities)
	TheiaCoV_IIIumina_PE_PHB_2023-06-27T18-29-37	92804, 93547, 944 (39 entities)
	tiaCoV_IIIumina_PE_PHB_2023-06-27T19-31-02	92804, 93547, 944 (39 entities)

Document TG-FLU-PE, Version 1		
Date: Effective Date: Workflow Version:		
8/4/2023	8/2023	PHB v1

4.4 RUNNING THE AUGUR [ANALYSIS] WORKFLOW

- 1. Open the Augur_PHB workflow in the workspace containing flu data
- 2. Choose latest version of the workflow in the *version dropdown field*, or the workflow version that was used during internal assay validation
- 3. Select the second bullet to *run workflow(s) with inputs defined by data table* (Fig 3, b)
- 4. Select the relevant SET data table under the select root entity type dropdown (Fig 3, c)
 - a. E.g. Kilifi_H3N2_set
- Click select data and choose the output file name from the Augur Prep workflow previously ran (e.g. HA_AugurPrep_YYYYMMDD.#); if Augur Prep was run twice for the HA and NA protein segments, the Augur Analysis workflow must be run twice, as well (they cannot be run together)
- 6. Click on the *inputs* tab to specify settings
- Set the first three attributes in the table to *this.kilifi_H3N2s.irma_ha_segment*, *"kilifi_H3N2_HA"*, and *this.kilifi_H3N2s.augur_metadata*, respectively (Fig 10)
 - a. Where *kilifi_H3N2* is the unique name of your data table in Terra for all three attribute fields
- Set the flu_segment, flu_subtype, and organism optional fields to "HA", "H3N2", and "flu", respectively (Fig 10)
- 9. Specify outputs by clicking on the outputs tab and use defaults (Fig 6); click save
- 10. Launch the workflow by clicking run analysis; enter desired comments and click launch

SCRIPT •• INPUTS	•• OUTPUTS •• RUN ANALYS	IS	
Hide optional inputs			
Task name↓	Variable	Туре	Attribute
augur	assembly_fastas	Array[File]+	this.kilifi_H3N2s.irma_ha_segment
augur	build_name	String	"kilifi_H3N2_HA"
augur	sample_metadata_tsvs	Array[File]+	this.kilifi_H3N2s.augur_metadata
augur	auspice_config	File	Optional
augur	clades_tsv	File	Optional
augur	distance_tree_only	Boolean	Optional
augur	flu_segment	String	"НА"
augur	flu_subtype	String	"H3N2"
augur	lat_longs_tsv	File	Optional
augur	min_num_unambig	Int	Optional
Figure 10.	organism	String	"flu"

Analyzing Influenza Data in Terra using Theiagen's TheiaCoV Illumina PE and Augur Workflows			
	Document TG-FLU-PE, Version 1		
Date:	Effective Date:	Workflow Version:	
8/4/2023	8/2023	PHB v1	

	Select	kilifi_H3N2_sets to process	SETTINGS 1 m	ow selected		
	•	kilifi_H3N2_set_id	t 🛈	kilifi_H3N2s	()	
		HA_AugurPrep_20230627.1		92804, 93547, 944	(37 entities)	
		NA_AugurPrep_20230627.1		92804, 93547, 944	(37 entities)	
Γ	Figure	11A. ch_PHB_2023-06-271	18-24-30	SRR11445892, SRR1.	. (5 entities)	
SCRIPT ••	INPUTS	•• OUTPUTS ••	RUN ANALYSIS			
Hide optional inputs						
Task name ↓		Variable		Туре	Attribute	
augur		assembly_fastas		Array[File]+	this.kilifi_H3N2	2s.irma_na_segment
augur		build_name		String	kilifi_H3N2_N	A"
augur		sample_metadata_ts	/5	Array[File]+	this.kilifi_H3N2	2s.augur_metadata
augur		flu_segment		String	"NA"	
augur		flu_subtype		String	"H3N2"	
Figure 11B.		organism		String	"flu"	

- 11. Repeat section 4.4 for the NA protein with the following changes:
 - a. When selecting data to run, choose the *NA Augur Prep output file* (Fig 11A)
 - b. Specify *this.kilifi_H3N2s.irma_na_segment*, *"kilkifi_H3N2_NA"* and *"NA"* in the first, second, and seventh input fields (Fig 11B)

- Navigate to the data tab of the Terra workspace containing flu data
- 2. Open the data table by clicking on the name of the data table in the left sidebar

		,	
Document TG-FLU-PE, Version 1			
Date:	Effective Date:	Workflow Version:	
8/4/2023	8/2023	PHB v1	

- 3. View *settings* above the data table (Fig 12), select *none* (Fig 13)
- 4. Select the following columns: *abricate_flu_subtype*, *abricate_flu_type*, *irma_subtype*,

irma_subtype, *nextclade_clade*, and nextclade_lineage

- a. <u>Optional</u>: save this column group for future use by clicking the save this column selection field, naming it (e.g. FluTyping), and clicking save
- IRMA is used to produce a consensus and variants assembly; abricate is used to confirm IRMA typing results
- 5. Click done
- 6. Determine the type, subtype, and

lineage for each sample by viewing the corresponding columns

- 7. Identify the Pangolin lineage for each sample
 - a. In the data table, find the column titled pango_lineage; nomenclature will be similar to the following: B.1.167
- 8. Follow lab-specific resulting and reporting procedures, as applicable

		NALVSES WORKELOWS JOB HI	STORY
			Show: all none Q Sort: alphabetical
		EDIT 🕺 OPEN WITH 🕒 EXPORT 1	SAVE THIS COLUMN SELECT
			nextclade_aa_dels
	~ D:	■ kilifi_H3N2_id ↓① ivar_	prop nextclade_aa_subs
d		100734	e nextclade_clade
Search all tables	۹ 🗖		nextclade_docker
4		100954	nextclade_ds_tag
🛙 kilifi_H3N2 (39)		b	nextclade_json
V		109275	nextclade_lineage
kilifi_H3N2_set (2)		109292	
		ANJESE	= _ nextclade_tsv
REFERENCE DATA	Č	109342	
lo references have been adde	ed.		- num reads clean1
dd reference data		109562	

4.6 VISUALIZING THE AUGUR TREE IN AUSPICE

- 1. Navigate to the *workspace data tab* and select the *data table* containing flu data
- 2. Click *settings* and *none*; then select only the nextclade_clade column (Fig 14)

	0	
	Document TG-FLU-PE, Ve	ersion 1
Date:	Effective Date:	Workflow Version:
8/4/2023	8/2023	PHB v1

- 3. <u>Select the checkbox</u> for each sample containing a value in the nextclade_clade column, including "unassigned" values (Fig 15, g)
- 4. Click *export* and *download as TSV* to download the metadata file (Fig 15, h)
- 5. *Save the file* as "[DATA_TABLE_NAME]auspice_metadata_YYMMDD.tsv"
- 6. In the flu Terra workspace, *open the "set" data table* with flu data; nomenclature is the same as the original data table plus the suffix "_set" (e.g. flu_H3N2_set)
- Under the column titled auspice_input_json, click to download the file corresponding to the sample set of interest
 - a. A new window will open in the browser; *right click* and *save* this file
- In a new browser window open https://auspice.us/; drag and drop the auspice input json file onto the webpage
- Drag and drop the metadata file onto the webpage
 - a. The sample names in the auspice output json and the metadata file must match; if they don't, open the metadata file and manually edit the names
- 10. In auspice, click the *color by* dropdown and choose *nextclade clade*
 - a. Unassigned clades may be older clades that are not currently assigned a clade by nextclade; these are displayed in black in the auspice timetree
- 11. *View the timetree and map* with geographical coordinates of the analyzed strains (Fig 17)
- 12. Repeat section 4.6 with the NA auspice tree and corresponding metadata

DASHBOARD DATA	ANALYSES WORKFLOWS	JOB HISTORY
	🖋 EDIT 🔀 OPEN WITH 🕒	
TABLES ~	□▼ kilifi_H3N2_id ↓	nextclade_clade
Search all tables Q	100734	h ^{3C}
■ kilifi_H3N2 (39) ①	≥ →954 G	unassigned
■ kilifi_H3N2_set (2)	109275	3B
	109292	3B
REFERENCE DATA V	109342	3C
No references have been added. Add reference data	109562	3C
OTHER DATA ~	109630	
Workspace Data	109974	3B
Figure 15.	110108	3C

Analyzing Influenza Data in Terra using Theiagen's TheiaCoV Illumina PE and Augur Workflows				
Document TG-FLU-PE, Version 1				
Date:	Effective Date:	Workflow Version:		
8/4/2023 8/2023 PHB v1				

5. QUALITY RECORDS

- Raw read files
- Sample read and assembly QC metrics
- Nextclade_clade and pango_lineage determinations
- Auspice timetree and map

6. TROUBLESHOOTING

- Consult with internal staff familiar with this procedure or contact <u>support@theiagen.com</u> for troubleshooting inquiries
- For document edit requests, contact <u>support@theiagen.com</u>

7. INTERFERENCES

N/A

8. REFERENCES

None

9. **REVISION HISTORY**

Revision	Version	Release Date
Document creation	1	7/2023

Document TG-FLU-PE, Version 1		
Date:	Effective Date:	Workflow Version:
8/4/2023	8/2023	PHB v1

10. APPENDICES

10.1 USING EXCEL TO ALIGN TSV SAMPLE NAMES TO AUSPICE.JSON FILE NAMES

- 1. Open the metadata tsv file titled "[DATA_TABLE_NAME]auspice_metadata_YYMMDD.tsv" in excel
- 2. Select column B, right click, and insert a column between columns A and B
- 3. In cell B2, enter the following formula relevant to the protein segment being analyzed
 - a. For HA protein segments: =A2&"_A_HA_H3"
 - b. For NA protein segments: =A2&"_A_NA_N2"
- 4. With cell B2 selected, click and drag the green plus at the bottom right of the green box down to copy the formula to the remaining samples
- 5. Select column C, right click, and insert a new column between columns B and C
- 6. Select and copy column B contents
- 7. Select column C and right click to paste values into column C
- 8. Copy and paste cell A1 into C1
- 9. Delete columns A and B leaving only the pasted sample name values and nextclade_clade
- 10. Save the file and return to auspice; drag and drop or upload the new metadata file into auspice to add corresponding sample metadata